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Abstract. The influence of the finite transparency, T , of superconductor/normal metal (S/N) interface
on the critical temperature of proximity coupled layered structures is investigated in the dirty limit on
the basis of the microscopic equations solved exactly by a matrix method. The calculated theoretical
curves satisfactory reproduce the experimental dependencies of the critical temperature on the thickness
of the superconducting layers in N/S/N trilayers. The relation between the transparency coefficient and
the normal metal coherence length is also discussed.

PACS. 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions – 74.78.Fk Multilayers,
superlattices, heterostructures

Introduction

In recent years the interest in superconducting layered
structures has grown up because of their possible appli-
cations in nanoelectronics and spintronics. In particular,
in the last case one should deal with artificially fabri-
cated layered ferromagnet/superconductor (F/S) systems
(for a review see Ref. [1]) and in many applications of
these structures a high transparency T of the F/S inter-
face is necessary. For this reason many papers were re-
cently devoted to the study of the interface transparency
both in normal metal/superconductor (N/S) and F/S hy-
brids [2–8].

The mechanism responsible for the existence of the
superconducting state in these systems is the proximity
effect [9–12], i.e. the diffusive penetration of the Cooper
pairs into the normal metal. The basis of the theory of N/S
structures were developed by de Gennes and Werthamer
(dGW) in the framework of the microscopic BCS the-
ory [11,13]. The behavior of the order parameter inside S
and N layers and the dependence of the critical tempera-
ture Tc on the geometrical and material parameters of N/S
and N/S/N structures have been calculated in the dirty
limit of this theory [14]. The dGW theory was generalized
by Takahashi and Tachiki (TT) to calculate the upper crit-
ical fields Hc2 of multilayers [15], theory which was then
developed in [16–22]. In all the above mentioned papers
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calculations have been performed assuming a total trans-
parency of the N/S interface. In this case the Tc(dS) (dS

is the S-layer thickness), Hc2||(T ) and Hc2⊥(T ) dependen-
cies could be satisfactory fitted but only if considered sep-
arately. However, in [21] it was shown that, to determine
all the thermodynamic characteristics in a self consistent
way, the processes of quantum scattering of the electrons
due to potential barriers at the N/S interfaces (related, for
example, to different values of the Fermi velocities in S and
N metals [5]) must be taken into account. These processes
determine the appearance of a finite transparency coeffi-
cient. As it was shown in reference [6], when considering
the finite transparency of the N/S boundary in the frame-
work of the TT formalism, a satisfactory description of
the thermodynamic characteristics of infinite N/S struc-
tures can be obtained. Using the same approach a more
general model for the Tc determination in bilayers, con-
sisting of two different superconductors with no restriction
on the film thickness and on the resistivity of the interface
between two metals, was derived in [23].

In [7,8] we performed detailed experimental studies of
the interface transparency in Cu/Nb/Cu and Pd/Nb/Pd
trilayers. The interpretation of the experimental data was
done on the basis of the formulas obtained as a limiting
case of the one mode approximation of the microscopic
theory [24]. In this work we analyze the Tc(dS) dependence
in S/N structures as a function of the sample parameters
using the multimode solution of the microscopic equa-
tions written as a system of linear ordinary differential
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equations, as proposed in [20]. In this way we have
interpreted the experimental data for Cu/Nb/Cu and
Pd/Nb/Pd trilayers of references [7] and [8] and we have
compared the results with the ones obtained using the
Werthamer’s one mode approximation. A good agreement
between the theory and the data was achieved using rea-
sonable values for the sample parameters. Moreover, the
functional relation between T and the normal metal co-
herence length was obtained.

Basic equations

We chose the coordinate system with the OZ axis directed
perpendicular to the surface of a layered structure. The
coordinates z = 0 and z = L correspond to the left and
to the right boundaries of the sample respectively. The
order parameter, which describes the critical state of the
superconducting condensate in the N/S structure in ab-
sence of the external magnetic field, is determined by the
linearised integral Gorkov self-consistent condition [25] in
the form [11]

∆(z) = kBT · V (z)
∑

ω

∫
dz′Qω(z, z′)∆(z′). (1)

The functions Qω(z, z′), which determine the kernel of
the integral equation (1), in the dirty limit satisfy the
differential equation

(
2 |ω| −D(z)

d2

dz2

)
Qω(z, z′) =

2π
�
N(z) δ(z − z′). (2)

Here the Matsubara frequency ω is defined by �ω =
πkBT (2m + 1) (m = 0,±1,±2, . . .,±mD) with the fre-
quency cutoff |ω| ≤ ωD, where ωD is the Debye frequency,

mD ≡
[

ωD

2πkBTS
− 1

2

]

(square brackets here denote the integer part), and TS is
the critical temperature of bulk sample.

D(z) =

{
Ds, z ∈ Is
Dn, z ∈ In

,

Is and In are the regions of z values which correspond to
the S and N layers respectively; Ds, Dn are the diffusion
constants of S and N layers respectively. Functions N(z)
and V (z) are determined analogously (via the density of
states at the Fermi level, Ns and Nn, and via the electron-
phonon interaction constants, Vs and Vn).

As it was noticed in [20], the definition

∆ω(z) ≡
∫
dz′Qω(z, z′)∆(z′) (3)

reduces the system of integro-differential equations (1, 2)
to the homogeneous system of linear ordinary differential

equations
(

2� |ω| − �D(z)
d2

dz2

)
∆ω(z) =

2πkBTN(z)V (z)
∑

ω′
∆ω′(z), (4)

which coincides with the linearised Usadel equations [26].
The order parameter of the superconducting state is

then expressed as

∆(z) = kBT · V (z)
∑

ω

∆ω(z). (5)

The boundary conditions at the external surfaces and at
the N/S interfaces for the functions ∆ω(z) can be written
as [27]

d∆ω(0)
dz

=
d∆ω(L)
dz

= 0 (6)

D(zi + 0)
d∆ω(zi + 0)

dz
= D(zi − 0)

d∆ω(zi − 0)
dz

(7.1)

D(zi − 0)
d∆ω(zi − 0)

dz
=
υF,ntnNn

2

×
(
∆ω(zi + 0)
N(zi + 0)

− ∆ω(zi − 0)
N(zi − 0)

)
.

(7.2)

In equations (6) and (7) zi is Z-coordinate of the N/S in-
terfaces (index i corresponds to the ith interface, in a
trilayered structure i = 1, 2), υF,n is Fermi velocity for
N metal, tn is the transparency parameter of the N/S in-
terface. tn is related to the quantum transparency coeffi-
cient T by the expression: T = tn/(1 + tn).

The exact solutions of the equations system (4) are
easy to construct by joining the exact solutions for each
layer via the interface conditions (7). Then we build the
matrizant R̂(z) of (4) [28], and get by (6) the system of
linear algebraic equations which connects vectors ∆(z) ≡
(∆0(z), ∆1(z),. . . , ∆mD(z), ∆′

0(z), ∆′
1(z),. . . , ∆′

mD(z))T

at the edges of the structure:
(

∆(L)
0

)
= R̂(L)

(
∆(0)

0

)
. (8)

The expression for the matrix R̂(L) via the ma-
trizants Ŝ(z) and M̂ (z), which correspond to S and N lay-
ers respectively and via matrices P̂ns, P̂sn of joining con-
ditions (7) is

R̂(L) = M̂ (dn)
[
P̂nsŜ(ds)P̂snM̂ (dn)

]Nbl

. (9)

In equation (9) Nbl is the number of bilayers and dn is
the thickness of N layer. It is known the expression for
matrix M̂ (dn) [28]:

M̂ (dn) =

⎛

⎝
diag

[
ch

(
dn

ξ
(m)
n

)]
diag

[
ξ
(m)
n sh

(
dn

ξ
(m)
n

)]

diag
[

1

ξ
(m)
n

sh
(

dn

ξ
(m)
n

)]
diag

[
ch

(
dn

ξ
(m)
n

)]

⎞

⎠ ,

(10)
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Ŝ(ds) =

⎛

⎜⎜⎝

Ĉdiag

[
ch

(
dS

ξ
(m)
S

)]
ĈT Ĉdiag

[
ξ
(m)
S sh

(
dS

ξ
(m)
S

)]
ĈT

Ĉdiag

[
1

ξ
(m)
S

sh

(
dS

ξ
(m)
S

)]
ĈT Ĉdiag

[
ch

(
dS

ξ
(m)
S

)]
ĈT

⎞

⎟⎟⎠ (11)

and it is easy to obtain the following expression for the
matrix Ŝ(ds):

See equation (11) above.

In equations (10) and (11) the following definitions are
used:

ξ(m)
n = ξ(m)

n (T ) = ξn

√
TS

(2m+ 1)T
, ξn =

√
�Dn

2πkBTS
,

(12.n)

ξ
(m)
S = ξ

(m)
S (T ) = ξS

√

− TS

2Tµ(m)(T )
, ξS =

√
�DS

2πkBTS
.

(12.s)
Here the temperature functions µ(m)(T ) represent the
roots of the characteristic equation

ψ

(
ωD

2πkBT
+ 1 + µ(m)(T )

)
− ψ

(
1
2

+ µ(m)(T )
)

=

ψ

(
ωD

2πkBTS
+ 1

)
− ψ

(
1
2

)
, (13)

where ψ(x) is the real part of digamma function. Matri-
ces Ĉ in equation (11) are determined by the expressions

C
(m)
j =

s(m)

j + 1
2 + µ(m)(T )

,

s(m) =

⎡

⎣
mD∑

j=0

(
j +

1
2

+ µ(m)(T )
)−2

⎤

⎦
−1/2

(14)

and are orthogonal: ĈT Ĉ = ĈĈT = 1̂.
The joining matrices are determined by the formulas:

P̂sn =
(

1̂ γbξn1̂
0̂ p1̂

)
, P̂ns =

(
1̂ γbξnp

−11̂
0̂ p−11̂

)
. (15)

In equation (15) the following parameters are used:

p =
ρS

ρn
, γb =

ln
3ξn

2
tn
, (16)

where ρS and ρn are the resistivities of superconducting
and normal materials respectively, ln is the electron mean
free path in normal metal.

For N/S/N 3-layers, considered in this article, equa-
tion (8) reduces to:
[
Ŝt (dS/2) + pM̂t (dn) M̂−1

b (dn)
]

× M̂b (dn) M̂I,I (dn)∆(0) = 0 (17)

where:

M̂b = 1̂ + γbξnM̂t, Ŝt = ŜI,I
−1ŜII,I , M̂t = M̂I,I

−1M̂II,I .
(18)

In equations (18) matrices with the Roman indexes mean
the corresponding square blocks of the same matrices.
During the deduction of the equation (17) we used the
fact that the symmetrical solution of the system (8) corre-
sponds to the critical temperature, so that ∆(L) = ∆(0).
So, the critical temperature corresponds to the zero (at
the same time to the minimum) eigenvalue of the matrix

R̂L/2 ≡ Ŝt (dS/2) + p
M̂t (dn)

1̂ + γbξnM̂t (dn)
. (19)

It is worth to note that equations (13) and (17) in the one
mode approximation are reduced to the well known form

ψ

(
1
2

+ µ(T )
)
− ψ

(
1
2

)
= ln

(
TS

T

)
(20)

tg

⎛

⎝ dS

2ξS
·

√
2Tµ(T )
TS

⎞

⎠=
1√

2µ(T )

γ · th
(

dn
ξn

√
T
TS

)

1+γb

√
T
TS
th

(
dn
ξn

√
T
TS

)

(21)
where µ(T ) ≡ µ(0)(T ) is the largest root of equation (13),
and

γ ≡ p
ξS
ξn

=
ρSξS
ρnξn

=
NnDn

NsDs

ξS
ξn
. (22)

According to [24], the one-mode approximation will be
self-consistent at low transparency of N/S interface, which
for thick N layer means γb �

√
TS/T . In this case instead

of equation (21) we get

tg

⎛

⎝ dS

2ξS
·

√
2Tµ(T )
TS

⎞

⎠ ≈ γ

γb

√
TS

2Tµ(T )
. (23)

The last equation was used in [7,8] for describing the ex-
perimental data.

Transparency coefficient and critical
temperature of Pd/Nb/Pd and Cu/Nb/Cu
3-layers

By solving the exact equations (13) and (17) it was pos-
sible to reproduce the experimental Tc(dS) dependencies
for two sets of Pd/Nb/Pd samples [8] (sets PS1 and PS2)
obtained by dc sputtering and for two sets (CS1 and CS2)
of Cu/Nb/Cu samples, obtained by MBE. Data for CS2
were already published in [7]. The estimated values of the
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(a)

(b)

Fig. 1. (a) Critical temperature, Tc, versus Nb thickness, dS, in
Pd/Nb/Pd trilayers with constant Pd thickness, dn = 150 nm
(set PS1). The theoretical calculations refer to two different
pairs of ξn and T values (for details see text). (b) Critical tem-
perature, Tc, versus Nb thickness, dS, in Pd/Nb/Pd trilayers
with constant Pd thickness, dn = 150 nm (set PS2). The the-
oretical calculations refer to two different pairs of ξn and T
values (for details see text).

material parameters are almost the same used in [7,8].
The critical temperature TS of bulk Nb in Pd/Nb/Pd
structures was chosen to be TS = 8.44 K for PS1 and
TS = 8.3 K for PS2. For Cu/Nb/Cu structures we choose
TS = 9.0 K. These TS values correspond to the critical
temperatures of our thick Nb films. In all cases the su-
perconducting coherence length was ξS = ξNb = 6.4 nm.
The Nb resistivity in Cu/Nb/Cu trilayers was measured
as ρNb,MBE = 3.6 µΩ cm, while for Pd/Nb/Pd we used
the value ρNb,sputt = 5.0 µΩcm, typical for Nb sputtered
films. In references [7] and [8] the ξn values (26 nm for Cu
and 6 nm for Pd) were obtained from the empirical con-
dition of the decay of the superconducting wave function
in the normal layer of the Nb/Cu(Pd)/Nb structures [7,
8,29]. Since this method presents some degree of uncer-
tainty, here the fitting procedure was performed for dif-
ferent values of ξn. The normal metal resistivity values
were ρCu = 1.3 µΩ cm and ρPd = 5.0 µΩ cm, resulting in
an estimated electron mean free paths of ln,Cu = 10 nm
and ln,Pd = 6 nm, respectively. Finally, the transparency
parameter tn was obtained as a fitting parameter.

(a)

(b)

Fig. 2. (a) Critical temperature, Tc, versus Nb thickness, dS, in
Cu/Nb/Cu trilayers with constant Cu thickness, dn = 150 nm
(set CS1). The theoretical curve is obtained for ξn = 26 nm
and T = 0.242. (b) Critical temperature, Tc, versus Nb thick-
ness, dS, in Cu/Nb/Cu trilayers with constant Cu thickness,
dn = 150 nm (set CS2). The theoretical curve is obtained for
the same ξn and T values of (a).

The fitting procedure was organized as follows. We
fixed a value for ξn and then the parameter tn was obtained
by imposing the equality between the theoretical and the
experimental value of Tc at a certain dS. We choose the
point Tc(dS = 30 nm) for the Pd/Nb/Pd structure, set
PS1, and the point Tc(dS = 20 nm) for the Cu/Nb/Cu
structure, set CS1. Then the whole Tc(dS) curve was re-
constructed. The pair (ξn, tn) obtained for set PS1 was
then used to fit the experimental data of set PS2. The
results for both sets of Pd/Nb/Pd samples are shown in
Figures 1a and 1b. The results for both sets of Cu/Nb/Cu
are shown in Figures 2a and 2b. From Figures 1 and 2
follows that the theoretical curves reproduce with high
accuracy the experimental Tc(dS) dependencies. The stan-
dard deviation between the theoretical and experimen-
tal data is 0.03 K for the series PS1 while it is 0.17 K
for the series PS2. Analogous results were obtained for
the sets CS1 and CS2. Moreover it is worth to notice
that the theoretical curves Tc(dS) plotted for different
(ξn, T (ξn)) pairs overlap and, as it can be seen in Fig-
ures 1a and 1b, they are practically undistinguishable. In
Figures 1a and 1b one curve corresponds to ξn = 6 nm,
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(a)

(b)

Fig. 3. (a) The calculated dependencies of T and γb on the
normal coherence length, ξn, for Pd/Nb/Pd samples. Inset:
the dependencies γbξn,scale versus ξn,scale obtained according
to the exact solution, equations (13) and (17) (triangles), and
to equation (24) (line). (b) The calculated dependencies of T
and γb on the normal coherence length, ξn, for Cu/Nb/Cu
samples.

the value which was used in [8], and to a value of the inter-
face transparency T = 0.539, while the other corresponds
to ξn = 8 nm and to a fully transparent S/N bound-
ary. The same is valid for Cu/Nb/Cu samples. For this
reason in Figures 2a and 2b only the theoretical curve
corresponding to ξn = 26 nm, the value used in [7], is
reported. In this case T = 0.242, a smaller value com-
pared to the one obtained in [20]. For ξn = 30 nm we ob-
tained instead T = 0.353. The functional relation between
ξn and T is plotted in Figures 3a and 3b for Pd/Nb/Pd
and Cu/Nb/Cu systems, respectively. In the same figures
we also show the dependence γb(ξn). This dependence can
be empirically expressed as:

γb (ξn) = α ·
(
ξn,max

ξn
− 1

)
(24)

where α is a coefficient and ξn,max is the upper limit of the
ξn values for which the solution of equations (13) and (17)
exists. ξn,max also corresponds to condition of a fully trans-
parent interface, since when ξn → ξn,max, then γb → 0
resulting in tn → ∞ and T → 1. For the Pd/Nb/Pd
structure we obtained α = 1.125 and ξn,max = 8 nm; for

(a)

(b)

Fig. 4. (a) Tc(dS) dependencies of Pd/Nb/Pd trilayers. Differ-
ent symbols refer to the different samples sets. Solid (dashed)
line is the result of the theoretical calculation in the one mode
approximation for set PS1 (PS2). (b) Tc(dS) dependencies in
Cu/Nb/Cu trilayers. Different symbols refer to the different
samples sets. The solid line is the result of the theoretical cal-
culation in the one mode approximation.

the Cu/Nb/Cu structure α = 1.115 and ξn,max = 44 nm.
In the inset of Figure 3a we show the γb · ξn,scale versus
ξn,scale dependence, where ξn,scale ≡ ξn/ξn,max, obtained
both from the solution of the exact equations (13) and (17)
and from the empirical equation (24). The perfect agree-
ment of the data obtained by the two methods proves the
validity of equation (24).

Finally we compare the exact results with the ones ob-
tained in the one mode approximation using the values of
TS and ρNb reported here. Also in this case the theoretical
curves satisfactorily describe the experimental results as
presented in Figures 4a and 4b, but the obtained trans-
parency coefficients are larger. For example, for the set
PS1 the precise calculation gives T = 0.539 for ξn = 6 nm,
while from the one mode approximation the best fit to the
data for the same ξn is obtained for T = 0.99, an unreal-
istic value for the transparency of a real system [5].

Conclusions

The application of the microscopic equations, solved ex-
actly by the matrix method, allows us to analyze the trans-
parency of Pd/Nb/Pd and Cu/Nb/Cu systems. It was
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shown that there is a set of ξn and T (ξn) values which
gives identical results for the Tc(dS) dependencies. The
functional relation between the values of ξn and T (ξn) has
been established. The method could also be applied to the
multilayered N/S structures with an arbitrary number of
bilayers.

V.N.K would like to thank Prof. L. Tagirov for the valuable
discussions, which stimulated this work.
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